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Test of renormalization predictions for universal finite-size scaling functions
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We calculate universal finite-size scaling functions for systems with-eomponent order parameter and
algebraically decaying interactions. Just as previously found for short-range interactions, this leads to a singu-
lar ¢ expansion, where is the distance to the upper critical dimension. Subsequently, we check the results by
numerical simulations of spin models in the same universality class. Our systems offer the essential advantage
that ¢ can be varied continuously, allowing an accurate examination of the region whisresmall. The
numerical calculations turn out to be in striking disagreement with the predicted singularity.
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In order to analyze numerical results obtained by MomefatiOQ:”mLHm<<;’>E>2/<¢f'>a which is directly related to the

Carlo or transfer.—r_natn.x stud|e§ of pr_lase tranS|tl|ons and Cm'bumulant introduced by Bindd®]. At the critical tempera-
cal phenomendijnite-size scalindg1] is a very widely used

. . . 5 ure T, it takes a universal, although geometry-dependent,
technique. This hypothesis, which was properly formulateci/alue("Cf Ref.[4]). In Ref.[6], an exgangion foQ{TC) F\)Nas
for the first time by Fishef2], allows the extrapolation of Co T e S ;
properties of finite systems, which do not exhibit a phas obtained in powers offe, up to0 O(e), which is shown in

; ig. 1 forn=1, alon ith numerical results for integdr
transition, to the thermodynamic limit. In 1982, Bie [3] 9 ’ g with humer . neg

) ) oee 2 . Given the low order of the expansion and the fact that it can
achieved a breakthrough by showing that finite-size scalm%n'y be checked for integer values of hardly any conclu-

laws can actually be derived from renormalization-groubsjons can be drawn from a comparison to numerical results,
(RG) theory, provided that the RG equations are not singulag,q any confirmation of the singular nature of thexpan-

at the fixed point. This implies a breakdown of finite-size gjon will have to wait until the RG calculation has been
scaling for dimensionalities=4, and consequently an ex- carried to substantially higher order. Thus, we propose a dif-
pansion of the finite-size scaling functions in powerseof ferent route: that is we replace the short-raf@e) forces by
=4—d is singularate =0. This rather surprising result was long-range attractive interactions decaying as a power law,
confirmed by explicit calculations for th@vector model in ~ J(r)ecr (@9 where 0<o<2. It was shown in Refs.
the largen limit. In addition, it follows from Ref[3] that the [10,1]] that these systems have an upper critical dimension
finite-size scaling relation for the free energy is a universad.=2c, and that, ford<d., the critical exponents can be
function depending only on two nonuniversal metric factors,calculated in terms of an expansion #=20—d, very
without an additional nonuniversal prefactor. This result wassimilar to the originale expansion, which is recovered for
derived from different arguments by Privman and Fiddéy =~ o—2. Since the upper critical dimension is now a continu-
and subsequently confirmed analytically for the sphericaPus parameter, we have the opportunity to verify
model[5]. Pioneering work6,7] then showed that a field- e'-expansion results for arbitrarily small. So, even if ac-
theoretic calculation of finite-size scaling functions is actu-tual physical realizations of this system may be scarce, it
ally possible. Specifically, Bmn and Zinn-Justiri6] devel- constitutes a very valuable mathematical model. Interest-
oped a systematie expansion for these functions. Unlike

1.0
the standard expansion in powerssofor critical exponents RG prediction ~—
and scaling functions of bulk properties, one finds, for a fully 09 |  Numerical results ——
finite geometry, an expansion in powers @§. More re-
cently, Esseet al. [8] introduced a promising perturbation 0.8 r
approach at fixed! which is applicable below the critical S o7l B
temperature as well. However, here we focus on the expan- & |  ~
sion in & and in particular on the singular nature of this o6t 0 T
expansion. T -
The systems under consideration have moomponent o5t
order parameteg with O(n) symmetry and periodic bound- g
0.4

ary conditions. A quantity of central interest is the amplitude
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FIG. 1. The amplitude rati@(T.) for systems with short-range
interactions. The dashed line shows tfe expansion of Ref{6].
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ingly, finite-size scaling functions for the spherical modelwhere the prime indicates that the=0 mode is omitted
with power-law interactions have been calculated by severdrom the sum. In the Schwinger parametrization this can be
authors[12] for d/2<o<d, but the nature of a possible rewritten as
singularity in the limit c—d/2 appears not to have been .
examined. The first part of this paper is therefore devoted to =, [~ _ (M) L)
a generalization of the treatment of REf] to systems with L dfo dse m;_m h 'mg_m e smyTHETT 1],
algebraically decaying interactions. For notational conve- (3)
nience we redefine=¢’ =20 —d. Throughout our analysis
we will closely adhere to the approach outlined in Héf. wheremzzﬁf'= 1mi2 and we have omitted the prefactdmn
Additional details can also be found in R¢L3], Chap. 36. +2)/6]g,. For d=o, the UV divergence in Eq(2) is re-
We consider a system with a hypercubic geometry, withflected by the divergence of the integral at snsallThus we
linear dimensionL and periodic boundary conditions. It is isolate this divergence by rewriting E(B) as
represented by the following Landau-Ginzburg-Wilson

o

Hamiltonian in momentum space, Lo-d
l1(d,o,t)
(2m)°
1 11 o—d o
H(ilksT=5 > 2 (K7+T0) i ki, -+ 77 —5lo P f du u-Yog-utLzn”
ki L (2m)° o \ogllo '
4
X 22 ik Bike,Biky B -k -k kg @
kokeds 1 with
()
Il(d,a,t)zf due utt2n’| 3 3 grum)Ti_q
0 my my

where the factork” (0<o<?2) arises from the isotropic
long-range interactions. Compared to the SR case, it leads to 1 /d
the general replacemekf— k¢ in all propagators. The indi- —Sd—lgr(;) Ud/”}, )
cesi andj refer to the components of the field. It has been

well established that this system belongs to the same unive{yhich is finite. Sy_, =274/ T(d/2) is the surface area of a
sality class as a discrete spin model with algebraically decayg_gimensional unit sphere. The second term in @gjcan be
ing interactions; in particular the-expansion resultsl0,1]  ~ntinued analytically for Re{)=o, and has a simple pole
for the critical exponents have been confirmege Refs. ¢ =2, (£=0). Upon expansion around this pole we
[14,19, and references therginDue to the finite geometry ¢4 for Eq. (4),

all components of the wave vectors are integer multiples of

27r/L. The sums run to infinity, which corresponds to a van- 2t 2
ishing lattice spacinga; however, the ratioL/¢ is finite, — . + . —Int—[In47+¥(0)]
wheread_/a and é/a are both sent to infinity6]. Expecta- (4m)T(o)e  (4m)T' (o) LT

tion values are computed from a partition function in which
Eq. (1) is replaced by an effective Hamiltonian, consisting of +
the exactly calculateét=0 (homogeneoysmode contribu- (2mL)”
tion and a perturbatively calculated part, which contains the
contribution of all nonzero modes. Only the latter contribu-whereW (o) denotes the digamma function. The addition of
tion is affected by the changeover to long-range interactionghe ¢*-insertion counterterm leads to the replacemerittaf
cf. Ref.[14]. To one-loop order this consists of a shift of the tZ42. To one-loop order, the renormalization constant has
critical temperature and a renormalization of the couplingthe same form as for SR interactiof8]; the pole is can-
constant. Higher operators do not contribute at this order. Weeled and the shifted reduced temperature is given by
introduce the dimensionless coupling constggpt 1™ °ug,
and work in the system of units where=1. The parameter
ro is split into ro.+t, wheret=rg—ro.xT—T., and we
requiret=0. The RG calculations are carried out in the
minimal subtraction schemgl6,17, where it is a crucial +0(gd), (7)
ingredient of the calculation that, despite the quantization of
all momenta, _thel UV divergences are taken care of by theith g,=2[(47)°T'(0)]~ 1go{1+ e[ In 47+ W (0)]+O(c?)}.
bulk renormalization constants. As we do not go beyond onerhe renormalized coupling constamis calculated in a simi-
loop, we have ignored the field renormalization constant. |ar fashion. The leading finite-size contribution is given by
The leading contribution to the shift df, is —[(n+8)/6]g3L =/(|k|"+1t) 2, which has a UV diver-
gence for Red)=20. The 1k pole is canceled by the coun-
terterm, where the renormalization constant to one-loop or-
Egoi 2’ 1 ) der is given bng=1+[(n+8)/63]§;. After some algebra,
6 LYK |k[7+t’ we find, for the renormalized coupling constant,

11(20,0,t)+0(e), (6)

[oa

- n+2AI . A1|2
t=t+ 5 GotInt+ 35(n+2)T(0)8o 11(200)
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n+8s. n+8. I'(o) At criticality, y=0 andx takes the value
g=0o 1+ ﬁgo(lﬂnt)— EQO—UQ(ZU,G,U
™ Vs 1 n+2 /1“(0)I 5 0)+0(s)
) Xo= Ve zm — 1,(20,0, e)(.
+0(gd) |, (8) (12
. A comparison to Eq(3.33 in Ref.[6] shows thatx, only
with differs from the SR case by a redefinition of a geometric
w factor, and the integrdl;, and thus we see that the singular
Iz(d,a,t)EJ' du ue”t(L’Z’T)U{Z LY erumyTE_ g structure is preserved in the generalization to long-range
0 my My forces. For completeness we remark that one may also cal-
1 /d culatexg by carrying out all manipulations at criticality. This
—Sd_l—l“(—)ud’”}. (9) permits a different parametrization and leads to the same
g \o expression forxgy, in which 1,(20,0,0) is replaced by
Equations(7) and (8) suffice to calculate the finite-size scal- !1(20,0)/I'(0/2), where 11(d,0)

ing functions close to criticality t®(s). To this order, the =/du w2 (3% e "")d—1—(m/u)¥?]. As a side
fixed-point value of@o only differs from the SR case in the note, we conjecturé;(4,2), which has been evaluated nu-
definition of &, g =[6e/(n+8)]+0(s?). We are now merically in Refs[6,13,19, to be exactly equal te-8In 2.

able to calculat&Ld’zg‘l’z at the fixed point, which, as we For lower dimensionalities, the upper critical dimension

; S -~ —._shifts toward smaller values @f, and numerical evaluation
shall see shortly, is the parameter appearing in the fmne-sz%lelds I,(d,d/2,0)= —2.92, —3.900, and— 4.8227 ford

scaling functions. This also provides a simple consistenc% : Do
check for our calculations, since all factorsLImave to dis- =1, 2, and 3, respectively. Substitution into E¢s2) and
- éll) suggests that for each of these values a reasonable con-

vergence may be expected for<1.
In order to verify these predictions, we have carried out
extensive Monte Carlo simulations of spin models with

y=tLY. We find 1b=0c-[(n+2)/(n+8)]e+0(e?),
which indeed agrees with R€fL0], and the final expression

'S =1 and algebraically decaying interactions, fbr1 and 2.
1 1 1 n—a Accurate resultr?{ coajld be obtained by means of an efficient
tL%g" = — =gyt ———=¢yln cluster algorithm[20]. We investigated system sizes<iD

9 e Vai Y20 20y Y <150000 ford=1 and 4<L=<400 for d=2, for several
values of the decay parameter These were chosen such
+ lsyr((’) I(20,0,yL~ 1) that 0<e=<1, where it should be noted that for very small
4 w7 Y the analysis is hampered by strong corrections to scaling.
. Simulational details can be found in R¢fl4], where the
2775 (n+2) T(o) (2 L1 classical regime & o=<d/2 was discussed. The numerical
ntg ° (0)11(20,0,y ) results were analyzed using an expression similar ta E3).
in Ref. [14], QuUT)=Q=+rtLYt+rt2LPt+ ... 5LV
+0(e?) (10 +---. Herey, andy; are the thermal and leading irrelevant
' exponents, respectively, ands; are nonuniversal coeffi-

cients, and the ellipses denote higher-order terms. An exten-
We are particularly interested in the amplitude rap sive analysis of the data will be presented elsewhere. The
at criticality, forn=1. The even moments of the magnetiza- resulting estimates fd@(T,) are shown in Figs. 2 and 3. For
tion distribution are calculated from ((4%)P)  the one-dimensional cag€ig. 2), the region 0.%e=<0.9
=["2d ()P exd — )V Zdpexd —#)], with S(¢)  has been covered. Far—1, the data points approach
=LIET 42+ (L/a)geY). We carry out the rescalingp Q(Ty)=1,in agreement with the occurrence of a Kosterlitz-
—.(Ld9g)~ 44, and expand in terms of the parameter Thouless transition ar=1 [21]._However, for O<ss_0.5,
212 the numerical results are described by a perfectly linear de-
=tL™g""" Elementary algebra leads to pendence om, in strong contrast with the predicted square-

3 3 1 root behavior. This discrepancy is reinforced by the two-
41“2(—) r —) r —) dimensional resulté=ig. 3), which are also well described by
0= 4 1 4 _ E 4 \/g a linear relation for 8<¢=<1.2. For largero, the error bars
FZ(E) (E) 2 F(g) increase, signaling a crossover to short-range criticality.
4 4 4 In summary, we have calculated universal finite-size scal-
ing functions to second order ige for systems with alge-
2 E FZ(E) braically decaying interactions. These calculations are essen-
. 4 1 4 5 3 tially a generalization of those for systems with short-range
| Bt 173y 2 | X0 | interactiong 6], and exhibit the same singular dependence on
2 1 FZ(Z) e. Subsequently, we have compared our results to accurate

simulations for one- and two-dimensional systems belonging
(1)  to the same universality class as the field-theoretical Hamil-
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FIG. 2. The critical value of the amplitude rai@as a function FIG. 3. The analog of Fig. 2 fod=2

of the decay parameter for d=1. The corresponding values of
are shown at the upper axis. The data in the regirer&0.5 are

which our xpansion starts, wer idental. In R2g
taken from Ref[14]. ch oury/s expansion starts, were accidenta Re2g],

it was suggested th& containsnonuniversalcontributions,
depending on the cutoff used in the integration of the order
tonian. The presence of long-range interactions offers th@arameter probability distribution. However, apart from the
advantage that is a continuous parameter, so that one carvalidity of this suggestion, it is difficult to envisage how this
reach the regime where the convergence ofshexpansion would lead to thgdis)appearance of a square-root contribu-
does not have to be doubted. Nevertheless, no agreementtien in thee expansion. Furthermore, it is an open question
found: the numerical data exhibit a linear rather than aas to what extent the breakdown of the field-theoretic de-
square-root dependence en Currently, we do not have an scription of finite-size scaling fod=4 [19] influences the
explanation for this striking discrepancy. Although higher-nature of thes expansion. We feel that an understanding of
order terms might yield some improvement, it is difficult to these problems is of some significance for an understanding
envisage that this would fully resolve the problems. It wouldof finite-size scaling of critical phenomena in general.

be very remarkable if the apparent linear variation over such It is a pleasure to thank Professor K. Binder and Professor
a wide range in Figs. 2 and 3, which includes the point fromH. Blote for useful comments.
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