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Test of renormalization predictions for universal finite-size scaling functions
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We calculate universal finite-size scaling functions for systems with ann-component order parameter and
algebraically decaying interactions. Just as previously found for short-range interactions, this leads to a singu-
lar « expansion, where« is the distance to the upper critical dimension. Subsequently, we check the results by
numerical simulations of spin models in the same universality class. Our systems offer the essential advantage
that « can be varied continuously, allowing an accurate examination of the region where« is small. The
numerical calculations turn out to be in striking disagreement with the predicted singularity.
@S1063-651X~99!00612-1#
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In order to analyze numerical results obtained by Mo
Carlo or transfer-matrix studies of phase transitions and c
cal phenomena,finite-size scaling@1# is a very widely used
technique. This hypothesis, which was properly formula
for the first time by Fisher@2#, allows the extrapolation o
properties of finite systems, which do not exhibit a pha
transition, to the thermodynamic limit. In 1982, Bre´zin @3#
achieved a breakthrough by showing that finite-size sca
laws can actually be derived from renormalization-gro
~RG! theory, provided that the RG equations are not singu
at the fixed point. This implies a breakdown of finite-si
scaling for dimensionalitiesd>4, and consequently an ex
pansion of the finite-size scaling functions in powers of«
542d is singularat «50. This rather surprising result wa
confirmed by explicit calculations for then-vector model in
the large-n limit. In addition, it follows from Ref.@3# that the
finite-size scaling relation for the free energy is a univer
function depending only on two nonuniversal metric facto
without an additional nonuniversal prefactor. This result w
derived from different arguments by Privman and Fisher@4#,
and subsequently confirmed analytically for the spher
model @5#. Pioneering work@6,7# then showed that a field
theoretic calculation of finite-size scaling functions is ac
ally possible. Specifically, Bre´zin and Zinn-Justin@6# devel-
oped a systematic« expansion for these functions. Unlik
the standard expansion in powers of« for critical exponents
and scaling functions of bulk properties, one finds, for a fu
finite geometry, an expansion in powers ofA«. More re-
cently, Esseret al. @8# introduced a promising perturbatio
approach at fixedd which is applicable below the critica
temperature as well. However, here we focus on the exp
sion in « and in particular on the singular nature of th
expansion.

The systems under consideration have ann-component
order parameterf with O(n) symmetry and periodic bound
ary conditions. A quantity of central interest is the amplitu
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ratio Q5 lim
L→`

^fL
2&2/^fL

4&, which is directly related to the

cumulant introduced by Binder@9#. At the critical tempera-
ture Tc it takes a universal, although geometry-depende
value~cf. Ref. @4#!. In Ref. @6#, an expansion forQ(Tc) was
obtained in powers ofA«, up to O(«), which is shown in
Fig. 1 for n51, along with numerical results for integerd.
Given the low order of the expansion and the fact that it c
only be checked for integer values of«, hardly any conclu-
sions can be drawn from a comparison to numerical resu
and any confirmation of the singular nature of the« expan-
sion will have to wait until the RG calculation has bee
carried to substantially higher order. Thus, we propose a
ferent route: that is we replace the short-range~SR! forces by
long-range attractive interactions decaying as a power l
J(r )}r 2(d1s), where 0,s,2. It was shown in Refs.
@10,11# that these systems have an upper critical dimens
dc52s, and that, ford,dc , the critical exponents can b
calculated in terms of an expansion in«852s2d, very
similar to the original« expansion, which is recovered fo
s→2. Since the upper critical dimension is now a contin
ous parameter, we have the opportunity to ver
«8-expansion results for arbitrarily small«8. So, even if ac-
tual physical realizations of this system may be scarce
constitutes a very valuable mathematical model. Intere

FIG. 1. The amplitude ratioQ(Tc) for systems with short-range
interactions. The dashed line shows theA« expansion of Ref.@6#.
7558 © 1999 The American Physical Society
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PRE 60 7559BRIEF REPORTS
ingly, finite-size scaling functions for the spherical mod
with power-law interactions have been calculated by sev
authors @12# for d/2,s,d, but the nature of a possibl
singularity in the limit s→d/2 appears not to have bee
examined. The first part of this paper is therefore devote
a generalization of the treatment of Ref.@6# to systems with
algebraically decaying interactions. For notational con
nience we redefine«5«852s2d. Throughout our analysis
we will closely adhere to the approach outlined in Ref.@6#.
Additional details can also be found in Ref.@13#, Chap. 36.

We consider a system with a hypercubic geometry, w
linear dimensionL and periodic boundary conditions. It i
represented by the following Landau-Ginzburg-Wils
Hamiltonian in momentum space,

H~fk!/kBT5
1

2 (
k

(
i

~ks1r 0!f i ,kf i ,2k1
1

4!

1

Ld
u0

3 (
k1 ,k2 ,k3

(
i , j

f i ,k1
f i ,k2

f j ,k3
f j ,2k12k22k3

,

~1!

where the factorks (0,s,2) arises from the isotropic
long-range interactions. Compared to the SR case, it lead
the general replacementk2→ks in all propagators. The indi-
ces i and j refer to the components of the field. It has be
well established that this system belongs to the same un
sality class as a discrete spin model with algebraically dec
ing interactions; in particular the«-expansion results@10,11#
for the critical exponents have been confirmed~see Refs.
@14,15#, and references therein!. Due to the finite geometry
all components of the wave vectors are integer multiples
2p/L. The sums run to infinity, which corresponds to a va
ishing lattice spacinga; however, the ratioL/j is finite,
whereasL/a and j/a are both sent to infinity@6#. Expecta-
tion values are computed from a partition function in whi
Eq. ~1! is replaced by an effective Hamiltonian, consisting
the exactly calculatedk50 ~homogeneous! mode contribu-
tion and a perturbatively calculated part, which contains
contribution of all nonzero modes. Only the latter contrib
tion is affected by the changeover to long-range interactio
cf. Ref. @14#. To one-loop order this consists of a shift of th
critical temperature and a renormalization of the coupl
constant. Higher operators do not contribute at this order.
introduce the dimensionless coupling constantg05m2«u0,
and work in the system of units wherem51. The parameter
r 0 is split into r 0c1t, where t5r 02r 0c}T2Tc , and we
require t>0. The RG calculations are carried out in th
minimal subtraction scheme@16,17#, where it is a crucial
ingredient of the calculation that, despite the quantization
all momenta, the UV divergences are taken care of by
bulk renormalization constants. As we do not go beyond
loop, we have ignored the field renormalization constant

The leading contribution to the shift ofTc is

n12

6
g0

1

Ld (
k

8
1

ukus1t
, ~2!
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where the prime indicates that thek50 mode is omitted
from the sum. In the Schwinger parametrization this can
rewritten as

L2dE
0

`

ds e2stF (
m152`

`

••• (
md52`

`

e2s(m2)s/2(2p/L)s
21G ,

~3!

wherem25( i 51
d mi

2 and we have omitted the prefactor@(n
12)/6#g0. For d>s, the UV divergence in Eq.~2! is re-
flected by the divergence of the integral at smalls. Thus we
isolate this divergence by rewriting Eq.~3! as

Ls2d

~2p!s
I 1~d,s,t !

1
Ls2d

~2p!s
Sd21

1

s
GS d

s D E
0

`

du u2d/se2ut(L/2p)s
,

~4!

with

I 1~d,s,t ![E
0

`

du e2ut(L/2p)sF(
m1

•••(
md

e2u(m2)s/2
21

2Sd21

1

s
GS d

s Du2d/sG , ~5!

which is finite.Sd2152pd/2/G(d/2) is the surface area of
d-dimensional unit sphere. The second term in Eq.~4! can be
continued analytically for Re(d)>s, and has a simple pole
for d52s («50). Upon expansion around this pole w
find for Eq. ~4!,

2
2t

~4p!sG~s!«
1

t

~4p!sG~s!
H 2

s
ln t2@ ln 4p1C~s!#J

1
1

~2pL !s
I 1~2s,s,t !1O~«!, ~6!

whereC(s) denotes the digamma function. The addition
thef2-insertion counterterm leads to the replacement oft by
tZf2. To one-loop order, the renormalization constant h
the same form as for SR interactions@18#; the pole is can-
celed and the shifted reduced temperature is given by

t̃ 5t1
n12

6s
ĝ0t ln t1

2s

12
~n12!G~s!ĝ0

1

Ls
I 1~2s,s,t !

1O~ ĝ0
2!, ~7!

with ĝ052@(4p)sG(s)#21g0$11 1
2 «@ ln 4p1C(s)#1O(«2)%.

The renormalized coupling constantg is calculated in a simi-
lar fashion. The leading finite-size contribution is given b
2@(n18)/6#g0

2L2d(k8(ukus1t)22, which has a UV diver-
gence for Re(d)>2s. The 1/« pole is canceled by the coun
terterm, where the renormalization constant to one-loop
der is given byZg511@(n18)/6«#ĝ. After some algebra,
we find, for the renormalized coupling constant,
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g5g0F11
n18

6s
ĝ0~11 ln t !2

n18

12
ĝ0

G~s!

ps
I 2~2s,s,t !

1O~ ĝ0
2!G , ~8!

with

I 2~d,s,t ![E
0

`

du ue2ut(L/2p)sF(
m1

•••(
md

e2u(m2)s/2
21

2Sd21

1

s
GS d

s Du2d/sG . ~9!

Equations~7! and~8! suffice to calculate the finite-size sca
ing functions close to criticality toO(«). To this order, the
fixed-point value ofĝ0 only differs from the SR case in th
definition of «, ĝ0* 5@6«/(n18)#1O(«2). We are now

able to calculatet̃ Ld/2g21/2 at the fixed point, which, as we
shall see shortly, is the parameter appearing in the finite-
scaling functions. This also provides a simple consiste
check for our calculations, since all factors lnL have to dis-
appear upon introduction of the appropriate scaling varia
y5tL1/n. We find 1/n5s2@(n12)/(n18)#«1O(«2),
which indeed agrees with Ref.@10#, and the final expression
is

t̃ Ld/2g21/2u f.p.5
1

Ag0*
F y2

1

2s
«y1

n24

2s~n18!
«y ln y

1
1

4
«y

G~s!

ps
I 2~2s,s,yL21/n!

1
2s21~n12!

n18
«G~s!I 1~2s,s,yL21/n!

1O~«2!G . ~10!

We are particularly interested in the amplitude ratioQ
at criticality, for n51. The even moments of the magnetiz
tion distribution are calculated from ^(f2)p&
5*2`

1`df(f2)p exp@2S(f)#/*2`
1`df exp@2S(f)#, with S(f)

5Ld
„

1
2 t̃f21(1/4!)gf4

…. We carry out the rescalingf
→(Ldg)21/4f, and expand in terms of the parameterx

[ t̃ Ld/2g21/2. Elementary algebra leads to

Q5

4G2S 3

4D
G2S 1

4D F 11S 4

GS 3

4D
GS 1

4D 2
1

2

GS 1

4D
GS 3

4D D A6x

1S 13

G2S 3

4D
G2S 1

4D 1
1

16

G2S 1

4D
G2S 3

4D 22D 6x21O~x3!G .

~11!
ze
y

le

-

At criticality, y50 andx takes the value

x05A«H 1

2

n12

A3~n18!
AG~s!

ps
I 1~2s,s,0!1O~«!J .

~12!

A comparison to Eq.~3.33! in Ref. @6# shows thatx0 only
differs from the SR case by a redefinition of«, a geometric
factor, and the integralI 1, and thus we see that the singul
structure is preserved in the generalization to long-ra
forces. For completeness we remark that one may also
culatex0 by carrying out all manipulations at criticality. Thi
permits a different parametrization and leads to the sa
expression forx0, in which I 1(2s,s,0) is replaced by
Î 1(2s,s)/G(s/2), where Î 1(d,s)
[*0

`du us/221@((m52`
` e2um2

)d212(p/u)d/2#. As a side

note, we conjectureÎ 1(4,2), which has been evaluated n
merically in Refs.@6,13,19#, to be exactly equal to28 ln 2.
For lower dimensionalities, the upper critical dimensi
shifts toward smaller values ofs, and numerical evaluation
yields I 1(d,d/2,0)522.92, 23.900, and24.8227 for d
51, 2, and 3, respectively. Substitution into Eqs.~12! and
~11! suggests that for each of these values a reasonable
vergence may be expected for«,1.

In order to verify these predictions, we have carried o
extensive Monte Carlo simulations of spin models withn
51 and algebraically decaying interactions, ford51 and 2.
Accurate results could be obtained by means of an effic
cluster algorithm@20#. We investigated system sizes 10<L
<150 000 ford51 and 4<L<400 for d52, for several
values of the decay parameters. These were chosen suc
that 0,«&1, where it should be noted that for very small«
the analysis is hampered by strong corrections to scal
Simulational details can be found in Ref.@14#, where the
classical regime 0,s<d/2 was discussed. The numeric
results were analyzed using an expression similar to Eq.~13!
in Ref. @14#, QL(T)5Q1r 1tLyt1r 2t2L2yt1•••1s1Lyi

1•••. Hereyt andyi are the thermal and leading irreleva
exponents, respectively,r i and si are nonuniversal coeffi-
cients, and the ellipses denote higher-order terms. An ex
sive analysis of the data will be presented elsewhere.
resulting estimates forQ(Tc) are shown in Figs. 2 and 3. Fo
the one-dimensional case~Fig. 2!, the region 0.1<«<0.9
has been covered. Fors→1, the data points approac
Q(Tc)51, in agreement with the occurrence of a Kosterli
Thouless transition ats51 @21#. However, for 0,«&0.5,
the numerical results are described by a perfectly linear
pendence on«, in strong contrast with the predicted squar
root behavior. This discrepancy is reinforced by the tw
dimensional results~Fig. 3!, which are also well described b
a linear relation for 0,«&1.2. For largers, the error bars
increase, signaling a crossover to short-range criticality.

In summary, we have calculated universal finite-size sc
ing functions to second order inA« for systems with alge-
braically decaying interactions. These calculations are es
tially a generalization of those for systems with short-ran
interactions@6#, and exhibit the same singular dependence
«. Subsequently, we have compared our results to accu
simulations for one- and two-dimensional systems belong
to the same universality class as the field-theoretical Ham
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tonian. The presence of long-range interactions offers
advantage that« is a continuous parameter, so that one c
reach the regime where the convergence of the« expansion
does not have to be doubted. Nevertheless, no agreeme
found: the numerical data exhibit a linear rather than
square-root dependence on«. Currently, we do not have a
explanation for this striking discrepancy. Although highe
order terms might yield some improvement, it is difficult
envisage that this would fully resolve the problems. It wou
be very remarkable if the apparent linear variation over s
a wide range in Figs. 2 and 3, which includes the point fr

FIG. 2. The critical value of the amplitude ratioQ as a function
of the decay parameters for d51. The corresponding values of«
are shown at the upper axis. The data in the regime 0,s<0.5 are
taken from Ref.@14#.
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which ourA« expansion starts, were accidental. In Ref.@22#,
it was suggested thatQ containsnonuniversalcontributions,
depending on the cutoff used in the integration of the or
parameter probability distribution. However, apart from t
validity of this suggestion, it is difficult to envisage how th
would lead to the~dis!appearance of a square-root contrib
tion in the« expansion. Furthermore, it is an open quest
as to what extent the breakdown of the field-theoretic
scription of finite-size scaling ford>4 @19# influences the
nature of the« expansion. We feel that an understanding
these problems is of some significance for an understan
of finite-size scaling of critical phenomena in general.

It is a pleasure to thank Professor K. Binder and Profes
H. Blöte for useful comments.

FIG. 3. The analog of Fig. 2 ford52.
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